Wednesday , 23 September 2020
Home » Science » Researchers capture the sound of an atom
Researchers capture the sound of an atom
Researchers capture the sound of an atom

Researchers capture the sound of an atom

Scientists at Chalmers University of Technology have opened a new door into the quantum world by ‘talking and listening’ to an atom.

The interaction between atoms and light is well known and has been studied extensively in the field of quantum optics. However, to achieve the same kind of interaction with sound waves has been a more challenging undertaking. The Chalmers researchers have now succeeded in making acoustic waves couple to an artificial atom. The study was done in collaboration between experimental and theoretical physicists.

“We have opened a new door into the quantum world by talking and listening to atoms”, says Per Delsing, head of the experimental research group. “Our long term goal is to harness quantum physics so that we can benefit from its laws, for example in extremely fast computers. We do this by making electrical circuits which obey quantum laws, that we can control and study.”

An artificial atom is an example of such a quantum electrical circuit. Just like a regular atom, it can be charged up with energy which it subsequently emits in the form of a particle. This is usually a particle of light, but the atom in the Chalmers experiment is instead designed to both emit and absorb energy in the form of sound.

“According to the theory, the sound from the atom is divided into quantum particles”, says Martin Gustafsson, the article’s first author. “Such a particle is the weakest sound that can be detected.”

Since sound moves much slower than light, the acoustic atom opens entire new possibilities for taking control over quantum phenomena.

“Due to the slow speed of sound, we will have time to control the quantum particles while they travel” says Martin Gustafsson. “This is difficult to achieve with light, which moves 100,000 times more quickly.”

The low speed of sound also implies that it has a short wavelength compared to light. An atom that interacts with light waves is always much smaller than the wavelength. However, compared to the wavelength of sound, the atom can be much larger, which means that its properties can be better controlled. For example, one can design the atom to couple only to certain acoustic frequencies or make the interaction with the sound extremely strong.

The frequency used in the experiment is 4.8 gigahertz, close to the microwave frequencies common in modern wireless networks. In musical terms, this corresponds approximately to a D28, about 20 octaves above the highest note on a grand piano.

At such high frequencies, the wavelength of the sound becomes short enough that it can be guided along the surface of a microchip. On the same chip, the researchers have placed an artificial atom, which is 0.01 millimeters long and made of a superconducting material.

Agencies/Canadajournal




  • About News

    Web articles – via partners/network co-ordinators. This website and its contents are the exclusive property of ANGA Media Corporation . We appreciate your feedback and respond to every request. Please fill in the form or send us email to: [email protected]

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    *