Scientists from the University of Utah have created a new material which could potentially lead to quantum computers capable of far faster processing than modern machines. According to their research, published in the journal Proceedings of the National Academy of Sciences (PNAS), the new material acts as both a conductor and an insulator, and is made of a silicon semiconductor with metal atop it
The research, led by University of Utah materials science and engineering professor Feng Liu, was published today in the journal Proceedings of the National Academy of Sciences.
Since the discovery of topological insulators almost a decade ago as a class of material designed to speed up computers, scientists have been trying to create a topological insulator that creates a large energy gap.
An energy gap is the amount of energy it takes for electrons to conduct electricity in a given material. A larger gap allows electricity to be conducted on a material’s surface so a computer can operate at room temperature while remaining stable. Liu and his team found that bismuth metal deposited on the silicon can result in a more stable large-gap topological insulator. But just as important, this process can be cost-effective and readily integrated with current widespread silicon semiconductor manufacturing techniques.
“We can put it on silicon so it can be married or combined with the existing semiconductor technology,” Liu says. “This is very important. It makes it more experimentally feasible and practically realistic.”
Because the bismuth layer is atomically bonded but electronically isolated from the silicon layer, it creates a large energy gap.
“It has the largest energy gap that was ever predicted. It makes room-temperature applications a possibility for topological insulator-based devices or computers,” Liu says.
Quantum computers, which have not been built yet, would run on the principles of quantum mechanics, in which the smallest particles of light and matter can be in different places at the same time. Quantum computers theoretically could be billions of times faster than conventional computers.
Quantum computing is expected to be used in a variety of uses, including in big data centers, security systems and encryption.
Spintronics is a new technology that uses the spin of an electron (instead of charge) in electronic devices. Spin is a property of electrons that makes the electron act like a tiny magnet. Spintronic devices can be used to encode and transfer information in electronic circuits and computers.
Agencies/Canadajournal